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Abstract— A new technique for real-time power quality (PQ) disturbances detection and classification 
based on wavelet multi-resolution analysis (MRA) is presented in this paper. The detection of start time, 
end time and duration of PQ event is based on the finest detail level of MRA while the classification of the 
event is based on the coarsest approximation level of MRA. LabVIEW platform has been used to 
implement the proposed technique in a laboratory setup. Several voltage events: interruption, swell and 
sag have been generated to test the performance of the proposed technique. The experimental results 
demonstrate the superiority, accuracy, and robustness of the proposed method in detecting the details of 
the voltage events as well as the event type classification. The effectiveness, accuracy and robustness of the 
proposed technique in the detection and classification of the PQ events have been demonstrated by 
experimental results. Moreover, the proposed technique shows a significant reduction in execution time 
with less complexity compared to conventional methods, for that the proposed technique is more suitable 
for online detection and classification applications. 
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1. INTRODUCTION 

Modern distributed renewable power sources contain a large number of power 

electronic devices. The increasing use of such devices contributes to the arising power 

quality (PQ) problems that have a negative impact on the power system reliability [1]. 

Therefore, developing an efficient monitoring system for PQ problems will help better 

understand and identify the cause of PQ disturbances. The international organizations 

working on PQ issues such as IEEE and IEC recommend guidelines for PQ monitoring 

[2, 3]. 

Along with technology advances, many companies worldwide applied 

minimization/elimination measures for PQ problems to increase their productivity. 

Information technology services and the continuous process industry are the most 

affected areas by PQ problems; voltage event huge financial losses may happen, with 

the consequent loss of productivity [4]. 

The automated classification of PQ disturbances is a significant issue for real-

time PQ monitoring especially in the deregulated era. The continuous wavelet 

transform (CWT) and Fourier transform (FT) have been proposed to detect and analyze 

PQ disturbances [5, 6]. However, CWT and FT have some limitations for on-line PQ 

monitoring applications. CWT is a redundant transformation where the excessive 

amount of information may affect the identification and classification process. On the 

other hand, since FT has a fixed frequency resolution, it is not suitable for the 
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characterization of voltage transient phenomena that needs a flexible frequency 

resolution [7]. Artificial intelligence and machine learning is presented for the 

classification of PQ disturbances as powerful tools [8-12]. 

The discrete wavelet transforms (DWT) is an effective tool for detection, 

localization, and classification of PQ disturbances [13-15]. The squared WT coefficients 

at each level are utilized to create a unique feature whereas the dyadic-orthonormal 

WT was used to detect and localize different PQ disturbances [16].  

Such a feature is used to classify different PQ disturbances using a proper 

classification tool. The wavelet multiresolution signal decomposition was proposed for 

analyzing PQ transient events. Generally speaking, some features have been proposed 

in literature to classify different PQ problems. These include: (a) the standard deviation 

curve at different resolution levels [17]; (b) the delta standard deviation multiresolution 

analysis at each decomposition level [18]; (c) the energy distribution of the wavelet part 

at each decomposition level [19], [20]; (d) the inductive inference approach [21]; and (e) 

the obtained wavelet coefficients at each decomposition level [22]. It is worth 

mentioning that the reported approaches utilize all the wavelet decomposition levels to 

extract the feature that can be used to classify PQ disturbances. Because the proposed 

approach in this study utilizes less information, it is considered more suitable for 

online applications.  

This paper presents a new wavelet multiresolution analysis-based real time 

detection and classification technique for voltage events developed on LabVIEW 

platform. In the proposed technique, the detection of start time, end time, and duration 

of PQ event is based on the finest detail level of MRA while the classification of the 

event is based on the coarsest approximation level of MRA. The proposed technique is 

applied on several typical short duration voltage events: interruption, sag, and swell. 

The performance of the proposed technique is also tested under the presence of 

harmonic contents and high frequency noise. This paper is organized as follow: 

Wavelet application to power quality is discussed in Section 2. Section 3 presents the 

proposed method. The experimental setup to assess the proposed method is described 

in Section 4.  Section 5 provides validation of the proposed method. The experimental 

results are presented and discussed in Section 6.  

2. WAVELET APPLICATION TO POWER QUALITY 

Multi-resolution analysis (MRA) is an effective approach for analyzing the signal 

mostly where it is necessary to check different frequency components separately. 

However, MRA is able to reveal aspects of data such as  breakdown points, 

discontinuities, trends, and self-similarity whereas other tools for signals analysis 

would be missed [23, 24]. Also, MRA is an efficient tool to extract features from PQ 

disturbance data [7, 25]. 

2.1. Detection and Localization 

MRA can be used to compose the distorted signal into different resolution levels. 

At the finer resolution levels, any changes in the smoothness of the signal can be 
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detected and localized. Generally, the detection and localization of the PQ disturbance 

can be achieved at the first finer decomposition levels. However, the classification 

process based on feature extraction can be accomplished at the coarser resolution levels 

[26]. 

2.2. Classification 

According to the patterns of energy distribution across multiple frequency bands, 

different PQ disturbances can be classified perfectly.  

If the used wavelet and scaling functions form an orthonormal set of basis, then 

the Parseval’s theorem relates the energy of the distorted signal to the values of the 

coefficients [27]. Thus the energy of the signal can be partitioned as: 

     ∫| ( )|      ∑|   ( )|
 

 

 ∑ ∑|  ( )|
 
                                                                           ( )

     

 

where     and     represent the coarsest approximation level with the fundamental 

frequency and the detail level of the jth decomposition level respectively; and k 

represents the wavelet coefficients at each decomposition level.  

2.3.   Characterization of Short-Duration Voltage Events  

For updating values, the rms methods depend on the window length and time 

interval that make the magnitude and duration of a voltage event inaccurate               

[28-30]. The MRA is presented to produce more accurate results that would be useful 

for determining the causes of such events [31]. In this work, the proposed method 

utilizes MRA with less information and thus; it is more suitable for on-line 

implementation. 

3. THE PROPOSED METHOD 

In general, approximation and details components can be utilized to reformulate 

a signal   as follows:  

     ∑        

 

 ∑∑      

     

                                                                                                         ( ) 

where 

      ( )        (      )                                                                                                                    ( ) 

       
( )         (       )                                                                                                              ( ) 

ψ(t) represents the mother wavelet; and φ(t) represents the scaling function. 

       ∫ ( )   ( )                                                                                                                                 ( ) 

        ∫ ( )    
( )                                                                                                                              ( ) 

It is observed that coefficients corresponding to orthogonal signals are 

orthogonal sequences. Suppose     ̃ are orthogonal signals. i.e. 

   〈    ̃〉         (∫  ( ) ̃( )     )                                                                                                         ( ) 

where 
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this yield: 

      〈    ̃〉   〈∑          ∑  ̃        
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since  

   〈         〉                                                                                                                                       (  ) 

therefore; 

       ∑   

  

 ̃                                                                                                                                       (  ) 

according to Eq. (11); (   ) and ( ̃    ) are orthogonal sequences. 

The inner product of a sinusoidal signal (f) with a distorted signal that has a high 

frequency disturbance (g+h) eliminates the effect of the high frequency disturbance (h) 

as follows: 

   〈     〉   〈   〉  〈   〉  〈   〉                                                                                                       (  ) 

The voltage events such as: sag, swell, and interruption are scaled versions of the 

original pure signal over the disturbance interval (Id). Therefore, voltage events should 

correlate well over Id with the pure sinusoidal signal at the coarsest approximation 

level. The following symbols have been adopted: 

  : pure signal. 

 (   )     : wavelet detail coefficients of the pure signal at the scale level j. 

    disturbance signal, which is zero outside Id, that is  ( )            .   , will be 

called the support of  . 

 ( ̃  )      
  wavelet coefficients of the disturbance signal at the coarsest 

approximation level     over the disturbance interval Id, where 

        {              }                                                                                                                    (  ) 

To discriminate between the three types of disturbances, the following procedure 

is proposed: 

1. compute: 

   ‖(    )‖   

  ( ∑     
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2. if (   )     (   )then there is no event, (  is a preassigned threshold; 

assumed in this work      ). 

3. if     (   )  the disturbance corresponds to a swell.  

4. if      (   ) the disturbance corresponds to a sag. 

5. if      , then 
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a. compute    as: 

    ∑      ̃  
     

                                                                                             (  ) 

b. check the following condition: 

∑  
 

 

   

                                                                                                                                       (  ) 

If satisfied then the disturbance corresponds to an interruption. Otherwise, it 

corresponds to some other high frequency disturbances. Fig. 1 shows the flow chart of 

the proposed approach. 
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Fig. 1. Flow chart of the proposed method. 
 

The mother wavelet Daubechies 6 (db6) is the most appropriate mother wavelet 

used to detect voltage events [32-34]. For that reason, db6 has been employed in the 

proposed approach to detect and classify all the transient disturbances in the distorted 

signal.  

The various PQ disturbances are generated according to the parametric equations 

given in Table 1. The step input function u(t) is used to vary the disturbance duration. 
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The PQ disturbances are generated by varying the amplitude of disturbances as well as 

duration of the event. 
 

Table 1. Modeling of PQ disturbances and their parameter variations [13]. 

Disturbance Modeling Parameter 

Sag 1 2(t) A(1 (u(t t ) u(t t )))sin( t)x        
0.1 0.9  , 

2 1 11T t t T    

Swell 1 2(t) A(1 (u(t t ) u(t t )))sin( t)x        
0.1 0.9  , 

2 1 11T t t T    

Harmonics 
1 3

5 7

(t) A( sin( t)) sin(3 t)

sin(5 t) sin(7 t)

x    

   

 

 
 

1 3 50.05 , , 0.15    , 

2 1i   

Interruption 1 2(t) A(1 (u(t t ) u(t t )))sin( t)x        
0.9 1  , 

2 1 11T t t T    

Sag and 

harmonics 

1 2 1(t) A(1 (u(t t ) u(t t ))) sin( t)x         

3 5 7sin(3 t) sin(5 t) sin(7 t)        

0.1 0.9  ,

2 1 11T t t T    

1 3 50.05 , , 0.15    ,

2 1i   

Swell and 

harmonics 

1 2 1(t) A(1 (u(t t ) u(t t ))) sin( t)x         

3 5 7sin(3 t) sin(5 t) sin(7 t)        

0.1 0.9  ,

2 1 11T t t T    

1 3 50.05 , , 0.15    ,

2 1i   

4. THE EXPERIMENTAL SETUP 

Fig. 2 shows the experimental setup that consists of a programmable AC source, 

NI Compact-RIO, panels housing current transformers with load connectors, 

programmable electronic loads, and workstation running LabVIEW. 

 
Fig. 2. The experimental setup in a power quality laboratory. 
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4.1. Voltage Input Module 

The NI-9225 module has been selected to measure rms voltage directly from the 

line. It is an analog input module consisting of 3 channels; it can directly measure rms 

phase voltage up to 300V. Fig. 3 shows the NI-9225 voltage analog input module. It is 

directly connected to the main power feeders to measure the instantaneous phase 

voltages for the three phases as shown in Fig. 4.  

 

 
Fig. 3. The NI-9225 voltage analog input module. 

 

L1

L2
L3

NI-9225

Main Feeders

 
Fig. 4. The general connection diagram of the NI-9225 voltage analog input module with power feeders. 

4.2. Current Input Module 

The NI-9227 module has been selected to measure the current. It has 4 channels; 

and can measure rms current directly up to 5 A.  On the other hand, most of the rms 

current values in the system are larger than 5A. For this reason, current transformer 

(CT 200/5 A) has been used to measure currents through the module in each phase as 

well as in the neutral line. Fig. 5 shows the NI-9227 current analog input module. It is 

connected to the main power feeders and the neutral line through 4 CTs to measure the 

instantaneous current for each line as well as for the neutral line as shown in Fig. 6.  
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Fig. 5. The NI-9227 current analog input module. 

 

L1
L2
L3
N

NI-9227

CT 200/5 A

Main Feeders

 
Fig. 6. General connection diagram of the NI-9227 current analog input module with power feeders. 

4.3. Sourcing Digital Output Module 

The NI-9476, shown in Fig. 7, is a 32-channel, 500 μs sourcing digital output 

module. It has been selected to perform software-timed and static operations in the 

controlling system. It is directly connected to the relays of the switching control panel 

of the devices and loads. Each channel can drive up to 250 mA continuous current on 

all channels simultaneously with 24V signals. However, each relay in the switching 

control panel is fed by two channels to make sure that the continuous output current of 

each channel will not exceed the limits (250mA). Fig. 8 shows the connection 

philosophy of the digital output module with the relays in the developed system.  

 

 
Fig. 7. The NI-9476 digital output module. 
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Fig. 8. The connection diagram of the NI-9476 digital output module with a control relay. 

4.4. Analog Output Module 

The NI-9264 is a 16-channel analog output module with -10V to +10V voltage 

range. It has been selected to control the mitigation device operation. The actual 

voltage signal of the controller of the mitigation device is provided by a channel of   

NI-9264. Figs. 9 and 10 show the selected analog output module and connection 

diagram of the module with a controller, respectively.  

 

 
Fig. 9. The NI-9264 analog output module. 

 

 
Fig. 10. Connection diagram of the controller to the NI-9264 analog output module. 

4.5. Real-time Controller 

The intelligent real-time embedded controller NI cRIO-9024  is shown in Fig. 11. 

It is a 800 MHz processor, 4 GB nonvolatile storage, 512 MB DDR2 memory. The 

controller runs LabVIEW Real-time for deterministic control, data logging, and 

analysis. 
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The controller has been installed on the cRIO chassis. The static IP address has 

been assigned to communicate the host computer with the controller over a standard 

Ethernet connection for remote monitoring and accessing. The MAX software is used 

for configuring IP settings for the controller and installing LabVIEW Real-Time 

software and device drivers on the controller. The system clock of the cRIO-9024 is 

synchronized with the internal high-precision real-time clock to provide timestamp 

data to the controller. 

 
Fig. 11. The NI cRIO-9024 real-time controller. 

4.6. Reconfigurable FPGA Chassis 

The selected model of reconfigurable FPGA chassis in this application is             

NI cRIO-9118 that is shown in Fig. 12. The selected chassis is 8-slot and it accepts any 

cRIO I/O module. It has an ability to automatically synthesize custom control and 

signal processing circuitry using LabVIEW. It is directly connected to the I/O module 

for high-performance access to the I/O circuitry of each module. A local PCI bus 

connection provides a high-performance interface between the RIO FPGA and the real-

time processor. 

 

 
Fig. 12. Reconfigurable FPGA Chassis_ NI cRIO-9118. 

 

System functionality can be changed and upgraded by changing the LabVIEW 

FPGA module code and rebuilding and compiling a new bit stream configuration to 

the FPGA hardware. Fig. 13 shows the ultimate virtual instrument (VI) block diagram 

of the proposed voltage monitoring system. 
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Fig. 13. Virtual instrument of the proposed method for the voltage monitoring system. 
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5. VALIDATION OF THE PROPOSED METHOD 

The conventional calculation method of rms voltage based on DWT in a power 

system can be calculated as follow: 

         √   
  ∑   

 

    

                                                                                                                     (  ) 

where     represents the rms voltage value of the coarsest approximation wavelet 

decomposition level    which includes the fundamental frequency;    represents the 

rms voltage value of each detail wavelet decomposition level j higher than or equal to 

  . The conventional method of calculating rms value based on DWT uses all of the 

detail levels as well as the coarsest levels as given in Eq. (19). However, the proposed 

approach calculates the rms value using the coarsest approximation level solely.  

Fig. 14 displays the first six decomposition levels of a signal. According to         

Eq. (19),     represents the rms voltage of the sixth approximation level (A6); and 

*  + represents {VD1, VD2 …VD6}. Therefore Eq. (19) can be rewritten as: 

         √   
   ∑   
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Fig. 14. The first six decomposition levels of the test signal: a) approximation levels; b) detail levels. 
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6. EXPERIMENTAL RESULTS 

The programmable AC source has been utilized to generate the test signal that is 

used to evaluate the performance of the proposed approach in real-time. The test 

voltage signal 220 V/60Hz 12 cycles with 166 sample/cycle has been generated to 

calculate the rms voltage value. Applying the conventional DWT method, at 33.2 ms 

voltage event is started and continued until 166 ms (event duration 8 complete cycles). 

The voltage events which have been checked include: interruption, sag, and swell. 

Each one of them is carried out for three times; and the average results are adopted in 

this study. 

6.1. Case 1- Voltage Interruption  

The voltage interruption event with a value of 11 Vrms is started at 33.2 ms and 

ended at 166 ms. The voltage event details that have been detected, characterized, and 

classified by the proposed method are shown in Fig. 15(a). The accuracy of the 

proposed approach in estimating the details of the voltage event reaches to more than 

99.6%. The proposed method is utilized to classify the voltage event type.  Fig. 15(b) 

shows the output of a monitoring system that measured the waveform corresponding 

to the voltage interruption response. The first detail wavelet decomposition level (D1) 

shown in Fig. 15(c) contains two peaks that have been utilized to detect voltage event 

details. Fig. 15(d) and Fig. 15(e) show the waveforms of the distorted and pure voltage 

signals within the event duration, respectively. Fig. 15(f) shows the coarsest 

approximation level (A6) of the distorted voltage signal during the voltage event 

duration. Fig. 15(g) shows the coarsest approximation level (A6) of the pure voltage 

signals within the voltage event duration. 

6.2. Case 2- Voltage Sag 

The voltage sag with a value of 110Vrms is started at 33.2 ms and ended at 166 ms.  

The estimated details of the voltage sag event using the proposed approach are shown 

in Fig. 16(a) which shows high accuracy in the estimation of the voltage sag event 

details, reaching to more than 99.7%. The monitoring system corresponding to the 

voltage sag event is shown in Fig. 16(b). The characterization and classification of the 

voltage sag according to the analyzed waveforms are shown in Fig. 16(c) to Fig. 16(g). 

6.3.   Case 3- Voltage Swell. 

The voltage swell with a value equal to 286 Vrms is started at 33.2 ms and ended 

at 166 ms. Fig. 17(a) shows the results obtained using the proposed approach in 

estimating the details of the voltage swell event with an accuracy of more than 99.6%.  

The monitoring system behavior in response to the voltage swell event is shown in          

Fig. 17(b). The characterization and classification of the voltage swell according to the 

analyzed waveforms are shown in Fig. 17(c) to Fig. 17(g). 
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Fig. 15. Detection and classification of voltage interruption: a) details of the voltage interruption;                

b) waveform of voltage interruption event; c) the 1st detail MRA level for (b); d) waveform of voltage 

interruption during the disturbance time; e) waveform of nominal voltage during the disturbance time;     

f) the coarsest approximation MRA level for (d); g) the coarsest approximation MRA level for (e). 
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Fig.16. Detection and classification of voltage sag: a) details of the voltage sag; b) waveform of voltage sag 

event; c) The 1st detail MRA level for (b); d) waveform of voltage sag during the disturbance time;             

e) waveform of nominal voltage during the disturbance time; f) the coarsest approximation MRA level for 

(d); g) the coarsest approximation MRA level for (e). 
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Fig. 17.  Detection and classification of voltage swell: a) details of the voltage swell; b) waveform of voltage 

swell event; c) the 1st detail MRA level for (b); d) waveform of voltage swell during the disturbance time; 

e) waveform of nominal voltage during the disturbance time; f) the coarsest approximation MRA level for 

(d); g) The coarsest approximation MRA level for (e). 
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The accuracy measures of the proposed method in the characterization of voltage 

events in terms of the start time, end time, and magnitude are given in Table 2. The 

performance of the proposed approach is compared with the conventional method 

given in Eq. (19). It is quite evident that the accuracy of the proposed method is 

generally better than that of conventional methods although it utilizes less information. 

On the other hand, the average execution time for ten runs of the conventional method 

for analyzing data of one window (12 cycles) is 51 ms while the average execution time 

for ten runs of the proposed method for analyzing the same data size is 11 ms. The 

proposed method will save more than 78% from the processing time to accomplish the 

analysis of voltage events. This makes the proposed method more suitable for online 

implementation, simpler, and faster than the conventional one for calculating rms 

value. 
 

Table 2. The proposed method accuracy for voltage events characterization. 

Event 

characterization 

Voltage event 

Interruption Sag Swell 

 Conv. Prop. Conv. Prop. Conv. Prop. 

The start time 99.8 99.8 99.8 99.8 99.8 99.8 

The stop time 99.7 99.7 99.7 99.7 99.6 99.6 

The magnitude 98.7 99.2 99.9 99.8 98.8 99.9 

6.4. Case 4- Voltage Events in the Presence of Harmonics 

Fig. 18 shows the results of the proposed method for the start and end time 

detection of voltage events in the presence of harmonics.  Fig. 18(a), (c) and (e) show 

the measured waveform corresponding to the monitoring system behavior in response 

to voltage sag, interruption and swell events in the presence of harmonics, respectively. 

The test case consists of voltage events in the presence of 3rd, 5th and 7th harmonics 

with 25, 15 and 10% harmonic contents, respectively. The start time, stop time and 

duration are 33.24 ms, 166.53 ms, and 133.29 ms for each voltage event. Fig. 18(b), (d) 

and (f) show the waveforms that are used to characterize and classify the voltage sag, 

interruption and swell. The estimated start time, end time and event duration are 

similar to those in Table 2.  

As a conclusion from this experiment; the presence of harmonics does not affect 

the performance of the proposed method to detect, classify and characterize voltage 

events. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 18.  Experimental results for detecting and classifying voltage events in the presence of harmonics: 
a) voltage sag waveform in the presence of harmonics; b) the first detail MRA level for start and end time 
detection for (a); c) voltage interruption waveform in the presence of harmonics; d) the first detail MRA 

level for start and end time detection for (c); e) voltage swell waveform in the presence of harmonics; f) the 
first detail MRA level for start and end time detection for (e). 
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7. CONCLUSION 

 A new real-time voltage events detection and classification technique based on 

multi-resolution analysis has been proposed. The proposed technique utilizes the first 

detail level and the last approximation level to detect and classify voltage events. The 

laboratory setup of the proposed technique has been developed and built using 

LabVIEW platform. The experimental real-time results show effectiveness and 

robustness of the proposed technique in the detection of the start time, end time, and 

duration as well as the classification of all the voltage events considered. Moreover, the 

proposed method is less complex and faster than conventional methods.    
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